Skip to contents

A object of class metabias is the result of fitting one or more models to a dataset with one row per study being meta-analyzed. These models are either (1) a meta-analysis with a correction for one or more within-study or across-study biases, or (2) a sensitivity analysis for meta-analyses with respect to these biases. Examples of functions that return such objects include:

  • PublicationBias::pubbias_meta()

  • PublicationBias::pubbias_svalue()

  • phacking::phacking_meta()

  • multibiasmeta::multibias_meta()

  • multibiasmeta::multibias_evalue()

Usage

metabias(
  data = data.frame(),
  values = list(),
  stats = data.frame(),
  fits = list()
)

new_metabias(x = list())

# S3 method for metabias
summary(object, ...)

Arguments

data

Dataframe containing data used to fit the model(s), with added columns for any values computed during model fitting.

values

List of values of arguments passed to the function.

stats

Dataframe of summary statistics from the model fit(s).

fits

List of fitted objects (which have a class that depends on the underlying fitting methods, e.g. robumeta::robu or rstan::stanfit).

x

List with elements "data", "values", "stats", "fits".

object

Object of class metabias.

...

Not used.

Value

An object of class metabias, which consists of a list containing the elements data, values, stats, fits (corresponding to the arguments passed).

Examples

# example model from robumeta::robu()
hier_mod <- robumeta::robu(effectsize ~ binge + followup + sreport + age,
                           data = robumeta::hierdat, studynum = studyid,
                           var.eff.size = var, modelweights = "HIER",
                           small = TRUE)

ci <- 0.95  # example set value
hier_mb <- metabias(data = robumeta::hierdat,                 # data passed to model
                    values = list(ci_level = ci),             # value used
                    stats = robu_ci(hier_mod, ci_level = ci), # stats from model
                    fits = list("robu" = hier_mod))           # model object

hier_mb
#> $data
#>    esid studyid   effectsize         var binge sreport males   age  followup
#> 1  5035       1  0.950826585 0.139126107     1       1  90.0 16.00  51.42857
#> 2    15       1 -1.651862741 0.067085341     0       0  72.0 14.00  34.28571
#> 3  3028       1  0.258915693 0.060215075     0       1  80.0 15.90  17.14286
#> 4  4086       1  0.190914467 0.036034293     0       0  82.0 15.30  34.28571
#> 5  1297       2 -0.247202173 0.046234448     0       0  76.0 16.00  34.28571
#> 6  3721       2  0.301957160 0.020227946     0       1  79.0 16.00  17.14286
#> 7  2768       2  0.242364183 0.033295847     0       1  66.0 16.90  51.42857
#> 8  2841       2  0.269546747 0.009444829     0       1  82.0 16.00  34.28571
#> 9  2409       3  0.387382537 0.036139041     0       1  70.0 16.00  51.42857
#> 10 4959       3 -0.398471236 0.032931905     0       0  75.0 15.50  51.42857
#> 11 1185       4  0.452842206 0.051564503     0       1  79.0 15.70 208.57143
#> 12 2522       4 -0.271548301 0.057856761     0       0  83.0 15.20  51.42857
#> 13  913       5 -0.070886418 0.067858674     0       1  41.0 18.45  17.14286
#> 14    5       5  0.816636622 0.050794918     1       1  65.0 18.40 104.57143
#> 15 4376       5  0.525371492 0.150762171     1       1  66.0 19.13  17.14286
#> 16 5505       5  0.317641258 0.039656453     1       1  89.5 17.06  51.42857
#> 17 3043       5  0.334007829 0.043146599     1       1  51.0 18.00  17.14286
#> 18 4342       5 -0.134081945 0.067114107     0       0  85.0 19.10  34.28571
#> 19 1417       5  0.000000000 0.024250438     1       1  35.0 19.30  17.14286
#> 20 1068       6 -0.465214431 0.161737770     0       0  77.0 16.00 104.57143
#> 21  710       6  0.362018377 0.072689950     0       0  82.0 15.40  34.28571
#> 22 3528       7  1.176043868 0.090221912     1       1  62.0 15.40 104.57143
#> 23   13       7  0.566977739 0.099065043     0       1  76.2 16.05  34.28571
#> 24 4068       7  0.282816976 0.022944927     0       0  56.0 17.00 208.57143
#> 25 5526       8  0.004153749 0.050125420     0       0  67.0 15.90  34.28571
#> 26 3442       8  0.096900612 0.057789702     0       0  71.0 15.40  34.28571
#> 27  356       8 -0.020446168 0.176932156     0       1  60.0 15.40  34.28571
#> 28  576       9  1.091028214 0.176737353     1       1  77.0 16.20  51.42857
#> 29  530       9  1.091028214 0.176737353     1       1  69.0 16.90  51.42857
#> 30  491       9  0.724698544 0.163945928     1       1  50.0 16.00  51.42857
#> 31 1087       9  0.829267025 0.072397366     1       1  50.0 16.00  51.42857
#> 32  545       9  1.270201564 0.184873298     1       1  62.0 17.10  51.42857
#> 33 1237      10  1.039815664 0.075676806     1       1  80.0 15.43  68.57143
#> 34 1793      11 -0.211120903 0.108789451     0       0  78.0 17.00  34.28571
#> 35 1733      12  0.149576589 0.025931364     0       1  64.0 19.00  51.42857
#> 36 2099      12  0.000000000 0.061553031     1       1  41.0 15.14  51.42857
#> 37  509      13  0.744848609 0.063855089     0       0  82.0 15.80  34.28571
#> 38 3859      13 -0.034580503 0.037754927     0       1  67.4 17.16  17.14286
#> 39 2925      14  0.844063163 0.085446268     1       1  80.0 15.95  51.42857
#> 40 4265      15  0.347013086 0.019760976     0       0  84.0 15.90 313.71429
#> 41 3786      15  0.157813311 0.089209534     0       1  72.0 20.00  17.14286
#> 42  900      15 -0.028918153 0.047732249     0       1  81.0 16.00  17.14286
#> 43 1627      15  0.743935704 0.118523963     0       1  71.0 16.61  51.42857
#> 44 4283      15 -0.105550244 0.211404294     0       0  50.0 15.40  34.28571
#> 45  938      15  1.205112219 0.089183509     1       1  77.0 15.40  34.28571
#> 46 3618      15  0.176503450 0.065062061     0       1  96.0 20.00  34.28571
#> 47 3297      15  0.438628316 0.017596249     0       1  86.0 16.27  34.28571
#> 48 5278      15  0.277786195 0.045071550     1       0  57.0 15.51 112.00000
#> 49 4730      15 -1.036182284 0.021280514     0       0  54.0 15.40 200.57143
#> 50 5008      15 -0.284874618 0.020202883     0       0 100.0 17.03  34.28571
#> 51 5291      15  0.441509426 0.097775139     0       1  47.6 16.00  17.14286
#> 52 3117      15 -0.029882502 0.045091134     0       1  65.0 16.50  34.28571
#> 53  195      15 -0.134236827 0.027541475     0       0  54.7 17.40  17.14286
#> 54 1073      15  0.077441879 0.043696571     0       1  57.0 15.74  34.28571
#> 55 3918      15  0.445514768 0.102731667     0       1   0.0 19.20  34.28571
#> 56  885      15  0.367331475 0.045752995     0       0  72.0 16.10 313.71429
#> 57 3698      15  0.431943923 0.128405437     0       1  76.7 16.40  51.42857
#> 58  947      15  0.137708470 0.013434974     1       1  46.0 18.00  17.14286
#> 59  402      15  1.767375469 0.214831442     1       1   0.0 16.06  34.28571
#> 60  304      15  1.315015078 0.194841713     1       1  62.0 16.00  34.28571
#> 61 4119      15  0.481691241 0.106149293     1       1  48.0 19.00  17.14286
#> 62 4052      15 -0.074442938 0.078014299     0       1  35.0 18.99  17.14286
#> 63 2897      15 -0.862986565 0.014297741     0       0  69.8 15.48 104.57143
#> 64  144      15  1.618591547 0.265495986     1       1  50.0 16.00  34.28571
#> 65 4404      15  0.211723000 0.074897826     1       1  46.0 19.60  34.28571
#> 66 3904      15  0.454529226 0.024869366     0       1  76.0 16.00  51.42857
#> 67 4235      15  0.216540292 0.161194205     0       1  60.0 19.70  34.28571
#> 68 5272      15 -0.413202494 0.085111827     0       0  87.5 16.88  16.00000
#> 
#> $values
#> $values$ci_level
#> [1] 0.95
#> 
#> 
#> $stats
#>          param    estimate           se     ci_lower    ci_upper    p_value
#> 1 X.Intercept.  0.39695130 0.6580061223 -1.675340360 2.469242958 0.58816304
#> 2        binge  0.45158407 0.1016414122  0.156275299 0.746892833 0.01438447
#> 3     followup  0.00133090 0.0007225729 -0.001731258 0.004393058 0.20481776
#> 4      sreport  0.53875845 0.1433975062  0.153235110 0.924281796 0.01696253
#> 5          age -0.04371413 0.0378744671 -0.172347635 0.084919375 0.34044554
#> 
#> $fits
#> $fits$robu
#> RVE: Hierarchical Effects Model with Small-Sample Corrections 
#> 
#> Model: effectsize ~ binge + followup + sreport + age 
#> 
#> Number of clusters = 15 
#> Number of outcomes = 68 (min = 1 , mean = 4.53 , median = 2 , max = 29 )
#> Omega.sq = 0.1086551 
#> Tau.sq = 0.02362071 
#> 
#>                Estimate   StdErr t-value  dfs P(|t|>) 95% CI.L 95% CI.U Sig
#> 1 X.Intercept.  0.39695 0.658006   0.603 3.06  0.5882 -1.67534  2.46924    
#> 2        binge  0.45158 0.101641   4.443 3.59  0.0144  0.15628  0.74689  **
#> 3     followup  0.00133 0.000723   1.842 2.03  0.2048 -0.00173  0.00439    
#> 4      sreport  0.53876 0.143398   3.757 4.36  0.0170  0.15324  0.92428  **
#> 5          age -0.04371 0.037874  -1.154 2.69  0.3404 -0.17235  0.08492    
#> ---
#> Signif. codes: < .01 *** < .05 ** < .10 *
#> ---
#> Note: If df < 4, do not trust the results
#> 
#> attr(,"class")
#> [1] "metabias" "list"    
summary(hier_mb)
#>          param    estimate           se     ci_lower    ci_upper    p_value
#> 1 X.Intercept.  0.39695130 0.6580061223 -1.675340360 2.469242958 0.58816304
#> 2        binge  0.45158407 0.1016414122  0.156275299 0.746892833 0.01438447
#> 3     followup  0.00133090 0.0007225729 -0.001731258 0.004393058 0.20481776
#> 4      sreport  0.53875845 0.1433975062  0.153235110 0.924281796 0.01696253
#> 5          age -0.04371413 0.0378744671 -0.172347635 0.084919375 0.34044554