Compute theoretical and empirical CDFs for a right-truncated meta-analysis
Source:R/diagnostics.R
rtma_cdf.Rd
Compute theoretical and empirical CDFs for a right-truncated meta-analysis
Arguments
- rtma
Output of
phacking_meta()
.
Value
A tibble with the columns yi
(effect sizes), cdfi
(their fitted CDF) and ecdfi
(their empirical CDF).
A data frame with the CDF derived from a metabias object.
References
Mathur MB (2022). “Sensitivity analysis for p-hacking in meta-analyses.” doi:10.31219/osf.io/ezjsx .
Examples
# \donttest{
money_priming_rtma <- phacking_meta(money_priming_meta$yi,
money_priming_meta$vi,
parallelize = FALSE)
#>
#> SAMPLING FOR MODEL 'phacking_rtma' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0.000421 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 4.21 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 4.414 seconds (Warm-up)
#> Chain 1: 3.716 seconds (Sampling)
#> Chain 1: 8.13 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'phacking_rtma' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 0.000364 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 3.64 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 4.276 seconds (Warm-up)
#> Chain 2: 3.043 seconds (Sampling)
#> Chain 2: 7.319 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'phacking_rtma' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 0.000352 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 3.52 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 4.454 seconds (Warm-up)
#> Chain 3: 3.328 seconds (Sampling)
#> Chain 3: 7.782 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'phacking_rtma' NOW (CHAIN 4).
#> Chain 4:
#> Chain 4: Gradient evaluation took 0.000349 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 3.49 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
#> Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
#> Chain 4: Elapsed Time: 4.008 seconds (Warm-up)
#> Chain 4: 3.421 seconds (Sampling)
#> Chain 4: 7.429 seconds (Total)
#> Chain 4:
rtma_cdf(money_priming_rtma)
#> # A tibble: 174 × 3
#> yi cdfi ecdfi
#> <dbl> <dbl> <dbl>
#> 1 0.650 0.972 0.994
#> 2 -0.416 0.133 0.0517
#> 3 -0.527 0.108 0.0287
#> 4 0.0618 0.689 0.592
#> 5 0.0735 0.567 0.609
#> 6 0.397 0.956 0.948
#> 7 0.153 0.697 0.718
#> 8 -0.0962 0.306 0.316
#> 9 -0.00654 0.458 0.471
#> 10 0.175 0.798 0.747
#> # ℹ 164 more rows
# }